
 Vishal Thakur

Page No.- 1

AIM: To implement stepper motor functionality using Atmega 16
microcontroller

Tools: Keil uVision 4, ISIS Proteus 7

Theory: Physically, a stepper motor (or step motor) is a brushless DC electric

motor that divides a full rotation into a number of equal steps. The
motor's position can then be commanded to move and hold at one of
these steps without any feedback sensor (an open-loop controller), as
long as the motor is carefully sized to the application. Practically, the
functionality of a stepper motor can be simulated by changing the
input pattern to the stepper motor at fixed instants of time, thereby
simulating the 'stepping'. This is achieved in our project by pressing
the forward and reverse button provided. Thus the motion of the motor
is controlled by these buttons. The angle of rotation of the motor is
also displayed with the help of a display provided.

The ATmega16 is a low-power CMOS 8-bit micro-controller based
on the AVR enhanced RISC architecture. By executing powerful
instructions in a single clock cycle, the ATmega16 achieves
throughputs approaching 1MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed. The
AVR core combines a rich instruction set with 32 general purpose
working registers. All the 32 registers are directly connected to the
Arithmetic Logic Unit (ALU), allowing two independent registers to
be accessed in one single instruction executed in one clock cycle. The
resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC
microcontrollers.

Algorithm: 1) Start

2) Define the pin configuration bits and the pin definitions.
3) Define the hex values necessary to produce required rotation.
4) Initialize the Stack Pointer and Configure the ports.
5) If rotation is desired in the forward direction, give positive values to
the ports.
6) If rotation is desired in the reverse direction, give negative values to
the ports.
7) Keep repeating 5 and 6.
8) Stop

Code: #include <avr/io.h>

#include <util/delay.h>

http://en.wikipedia.org/wiki/Brushless_DC_electric_motor
http://en.wikipedia.org/wiki/Brushless_DC_electric_motor
http://en.wikipedia.org/wiki/Open-loop_controller

 Vishal Thakur

Page No.- 2

#include <avr/pgmspace.h>
#define uchar unsigned char
#define uint unsigned int

// Low level port/pin definitions
#define sbit(x,PORT) (PORT) |= (1<<x)
#define cbit(x,PORT) (PORT) &= ~(1<<x)
#define pin(x,PIN) (PIN)&(1<<x)

// Pins definition
#define pos pin(0,PINC)
#define neg pin(1,PINC)
#define out PORTD

uchar PROGMEM turn[] =
{0x02,0x06,0x04,0x0c,0x08,0x09,0x01,0x03};

int main(void)
 { uchar i=0;

 // Initialize Stack Pointer
 SPL = 0x5f;
 SPH = 0X04;

 // Configure Ports
 DDRD = 0xff;
 DDRC = 0x00;
 out = 0xff;

//Motor action loop
 while(1)
 {
// Clockwise rotation
 if(!(pos))
 { i = i<8? i+1: 0;
 out = pgm_read_byte(&turn[i]);
 _delay_ms(50);
 }
// Anticlockwise rotation
 else if(!(neg))
 { i = i>0? i-1: 7;
 out = pgm_read_byte(&turn[i]);
 _delay_ms(50);
 }

 Vishal Thakur

Page No.- 3

 }
 }

Conclusion: The AVR family of controllers was studied in detail and the stepper

motor project was implemented using the ATmega16 microcontroller.
The inputs were manipulated and the effect was observed on the output
window.

